MIDDLE SCHOOL EARTH AND SPACE SCIENCES

Students in middle school develop understanding of a wide range of topics in Earth and space science (ESS) that build upon science concepts from elementary school through more advanced content, practice, and crosscutting themes. There are six ESS standard topics in middle school: Space Systems, History of Earth, Earth's Interior Systems, Earth's Surface Systems, Weather and Climate, and Human Impacts. The content of the performance expectations are based on current community-based geoscience literacy efforts such as the Earth Science Literacy Principles (Wysession et al., 2012), and is presented with a greater emphasis on an Earth Systems Science approach. The performance expectations strongly reflect the many societally relevant aspects of ESS (resources, hazards, environmental impacts) as well as related connections to engineering and technology.

Space Systems: Middle school students can examine the Earth's place in relation to the solar system, Milky Way galaxy, and universe. There is a strong emphasis on a systems approach, using models of the solar system to explain astronomical and other observations of the cyclic patterns of eclipses, tides, and seasons. There is also a strong connection to engineering through the instruments and technologies that have allowed us to explore the objects in our solar system and obtain the data that support the theories that explain the formation and evolution of the universe.

History of Earth: Students can examine geoscience data in order to understand the processes and events in Earth's history. Important concepts in this topic are "Scale, Proportion, and Quantity" and "Stability and Change," in relation to the different ways geologic processes operate over the long expanse of geologic time. An important aspect of the history of Earth is that geologic events and conditions have affected the evolution of life, but different life forms have also played important roles in altering Earth's systems.

Earth's Systems: Students understand how Earth's geosystems operate by modeling the flow of energy and cycling of matter within and among different systems. Students can investigate the controlling properties of important materials and construct explanations based on the analysis of real geoscience data. Of special importance in both topics are the ways that geoscience processes provide resources needed by society but also cause natural hazards that present risks to society; both involve technological challenges, for the identification and development of resources and for the mitigation of hazards.

Weather and Climate: Students can analyze data, including maps, and construct and use models to develop understanding of the factors that control weather and climate. A systems approach is also important here, examining the feedbacks between systems as energy from the sun is transferred between systems and circulates though the ocean and atmosphere.

Human Impacts: Students understand the ways that human activities impacts Earth's other systems. Students can use many different practices to understand the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts of their development.

MS. Space Systems

Students who demonstrate understanding can:

MS-ESS1-1a

Develop and use a model to explain how the positions of the Earth-Sun-Moon in a system and the cyclic patterns of each cause lunar phases and eclipses of the sun and moon. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]

MS-ESS1-1b

Develop and use a model to explain how the seasons occur. [Clarification statement: Reference Alaskan community latitudes and how position on the Earth affects the severity of the seasons for the different regions of AK. Compare and describe the seasons of the northern hemisphere and the southern hemisphere.] [Assessment Boundary: Assessment limited to qualitative and spatial explanations for seasons.]

MS-ESS1-2

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students' school or state.)]

[Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]

MS-ESS1-3

Analyze data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]

MS-ESS1-1a

Students who demonstrate understanding can: Develop and use a model to explain how the positions of the Earth-Sun-Moon in a system and the cyclic patterns of each cause lunar phases and eclipses of the sun and moon.

Clarification Statement: Examples of models can be physical, graphical, or conceptual.

	The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.	
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Science and Engineering Practices Developing and Using Models Develop and use a model to describe phenomena.	 Disciplinary Core Ideas ESS1.A The Universe and its Stars Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. ESS1.B: Earth and the Solar System This model of the solar system can explain eclipses of the sun and the moon. Earth's spin axis is fixed in direction over the short- term but tilted relative to its 	Patterns Patterns can be used to identify cause and effect relationships. Connections to Nature of Science Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through
	Earth's spin axis is fixed in direction over	in natural systems occur in consistent

MS-ESS1-1b

Students who demonstrate understanding can: Develop and use a model to explain how the seasons occur.

Clarification statement: Reference Alaskan community latitudes and how position on the Earth affects the severity of the seasons for the different regions of AK. Compare and describe the seasons of the northern hemisphere and the southern hemisphere.

Assessment Boundary: Assessment limited to qualitative and spatial explanations for seasons.

MS-ESS1-2

Students who demonstrate understanding can: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students' school or state.)

Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS1.A The Universe and its Stars	Systems and System Models
 Develop and use a model to describe 	Earth and its solar system are part of the	Models can be used to represent systems
phenomena.	Milky Way galaxy, which is one of many	and their interactions.
	galaxies in the universe.	
		Connections to Nature of Science
	ESS1.B: Earth and the Solar System	
	The solar system consists of the sun and a	Scientific Knowledge Assumes an Order and
	collection of objects, including planets,	Consistency in Natural Systems
	their moons, and asteroids that are held	Science assumes that objects and events
	in orbit around the sun by its	in natural systems occur in consistent
	gravitational pull on them.	patterns that are understandable through
	The solar system appears to have formed	measurement and observation.
	from a disk of dust and gas, drawn	
	together by gravity.	

MS-ESS1-3

Students who demonstrate understanding can: Analyze data to determine scale properties of objects in the solar system.

Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.

Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity
 Analyze and interpret data to determine 	The solar system consists of the sun and a	Time, space, and energy phenomena can
similarities and differences in findings.	collection of objects, including planets,	be observed at various scales using
	their moons, and asteroids that are held	models to study systems that are too
	in orbit around the sun by its	large or too small.
	gravitational pull on them.	
		Connections to Engineering, Technology, and
		Applications of Science
		Interdependence of Science, Engineering,
		and Technology
		Engineering advances have led to
		important discoveries in virtually every
		field of science and scientific discoveries
		have led to the development of entire
		industries and engineered systems.

MS. History of Earth

Students who demonstrate understanding can:

MS-ESS1-4

Construct and explain, using evidence from rock strata, how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of Earth's major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]

MS-ESS2-2

Construct and present an evidence-based explanation of how geoscience processes have changed Earth's surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate. Alaskan examples should include locally significant landforms including coastal or ocean sea floor structures.]

MS-ESS2-3

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]

MS-ESS1-4

Students who demonstrate understanding can: Construct and explain, using evidence from rock strata, how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of Earth's major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.

Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ESS1.C: The History of Planet Earth	Scale Proportion and Quantity
 Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 	The geologic time scale interpreted from rock strata provides a way to organize Earth's history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.	Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.

Students who demonstrate understanding can: Construct and present an evidence-based explanation of how geoscience processes have changed Earth's surface at varying time and spatial scales.

Clarification Statement: Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate. Alaskan examples should include locally significant landforms including coastal or ocean sea floor structures.

The performance expectations above were developed using the following elements from the NRC document A Framework for N-12 Science Education.		
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ESS2.A: Earth's Materials and Systems	Scale Proportion and Quantity
Solutions	The planet's systems interact over scales	Time, space, and energy phenomena can
Construct a scientific explanation based	that range from microscopic to global in	be observed at various scales using
on valid and reliable evidence obtained	size, and they operate over fractions of a	models to study systems that are too
from sources (including the students'	second to billions of years. These	large or too small.
own experiments) and the assumption	interactions have shaped Earth's history	
that theories and laws that describe the	and will determine its future	
natural world operate today as they did		
in the past and will continue to do so in	ESS2.C: The Roles of Water in Earth's Surface	
the future.	Processes	
	Water's movements—both on the land	
	and underground—cause weathering and	
	erosion, which change the land's surface	
	features and create underground	
	formations.	

Students who demonstrate understanding can: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).

Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	ESS1.C: The History of Planet Earth	Patterns
Analyze and interpret data to provide	Tectonic processes continually generate	Patterns in rates of change and other
evidence for phenomena.	new ocean sea floor at ridges and destroy	numerical relationships can provide
	old sea floor at trenches. (Secondary)	information about natural and human
Connections to Nature of Science		designed systems.
	ESS2.B: Plate Tectonics and Large-Scale	
Scientific Knowledge is Open to Revision in	System Interactions	
Light of New Evidence	 Maps of ancient land and water patterns, 	
 Science findings are frequently revised 	based on investigations of rocks and	
and/or reinterpreted based on new	fossils, make clear how Earth's plates	
evidence.	have moved great distances, collided,	
	and spread apart.	

MS. Earth's Systems

Students who demonstrate understanding can:

MS-ESS2-1

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]

MS-ESS2-4

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]

MS-ESS3-1

Construct an evidence-based explanation for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]

Students who demonstrate understanding can: Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.

Assessment Boundary: Assessment does not include the identification and naming of minerals.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS2.A: Earth's Materials and Systems	Stability and Change
Develop and use a model to describe phenomena.	 All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth's materials and living organisms. 	Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.

Students who demonstrate understanding can: Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.

Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS2.C: The Roles of Water in Earth's Surface	Energy and Matter
Develop a model to describe unobservable mechanisms.	 Processes Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. Global movements of water and its changes in form are propelled by sunlight and gravity. 	Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter.

Students who demonstrate understanding can: Construct an evidence-based explanation for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.		
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ESS3.A: Natural Resources	Cause and Effect
Solutions	 Humans depend on Earth's land, ocean, 	Cause and effect relationships may be
Construct a scientific explanation based	atmosphere, and biosphere for many	used to predict phenomena in natural or
on valid and reliable evidence obtained	different resources. Minerals, fresh	designed systems.
from sources (including the students'	water, and biosphere resources are	
own experiments) and the assumption	limited, and many are not renewable or	Connections to Engineering, Technology, and
that theories and laws that describe the	replaceable over human lifetimes. These	Applications of Science
natural world operate today as they did	resources are distributed unevenly	
in the past and will continue to do so in	around the planet as a result of past	Influence of Science, Engineering, and
the future.	geologic processes.	Technology on Society and the Natural
		World
		All human activity draws on natural
		resources and has both short and long-
		term consequences, positive as well a
		negative, for the health of people and the
		natural environment.

MS. Weather and Climate

Students who demonstrate understanding can:

MS-ESS2-5

Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]

MS-ESS2-6

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

MS-ESS3-5

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures and chemistry (both ocean and land surface), sea ice cover, permafrost, glacial change, atmospheric levels of gases such as carbon dioxide and methane, food availability locally and worldwide, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]

Students who demonstrate understanding can: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation)..

Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and Carrying Out Investigations	ESS2.C: The Roles of Water in Earth's Surface	Cause and Effect
 Collect data to produce data to serve as 	Processes	Cause and effect relationships may be
the basis for evidence to answer scientific	The complex patterns of the changes and	used to predict phenomena in natural
questions or test design solutions under a	the movement of water in the	systems.
range of conditions.	atmosphere, determined by winds,	
	landforms, and ocean temperatures and	
	currents, are major determinants of local	
	weather patterns.	
	ESS2.D: Weather and Climate	
	Because these patterns are so complex,	
	weather can only be predicted	
	probabilistically.	

Students who demonstrate understanding can: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.

Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS2.C: The Roles of Water in Earth's Surface	Systems and System Models
 Develop and use a model to describe 	Processes	Models can be used to represent systems
phenomena.	Variations in density due to variations in	and their interactions—such as inputs,
	temperature and salinity drive a global	processes and outputs—and energy,
	pattern of interconnected ocean	matter, and information flows within
	currents.	systems.
	ESS2.D: Weather and Climate	
	Weather and climate are influenced by	
	interactions involving sunlight, the ocean,	
	the atmosphere, ice, landforms, and	
	living things. These interactions vary with	
	latitude, altitude, and local and regional	
	geography, all of which can affect oceanic	
	and atmospheric flow patterns.	
	The ocean exerts a major influence on	
	weather and climate by absorbing energy	
	from the sun, releasing it over time, and	
	globally redistributing it through ocean	
	currents.	

Students who demonstrate understanding can: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures and chemistry (both ocean and land surface), sea ice cover, permafrost, glacial change, atmospheric levels of gases such as carbon dioxide and methane, food availability locally and worldwide, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking Questions and Defining Problems	ESS3.D: Global Climate Change	Stability and Change
Ask questions to identify and clarify	Human activities, such as the release of	Stability might be disturbed either by
evidence of an argument.	greenhouse gases from burning fossil	sudden events or gradual changes that
	fuels, are major factors in the current rise	accumulate over time.
	in Earth's mean surface temperature	
	(global warming). Reducing the level of	
	climate change and reducing human	
	vulnerability to whatever climate changes	
	do occur depend on the understanding of	
	climate science, engineering capabilities,	
	and other kinds of knowledge, such as	
	understanding of human behavior and on	
	applying that knowledge wisely in	
	decisions and activities.	

MS. Human Impacts

Students who demonstrate understanding can:

MS-ESS3-2

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. [Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts). Alaskan examples should include but are not limited to tsunamis, storm surges, landslides, and earthquakes.]

MS-ESS3-3

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]

MS-ESS3-4

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. [Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.]

Students who demonstrate understanding can: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts). Alaskan examples should include but are not limited to tsunamis, storm surges, landslides, and earthquakes.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Science and Engineering Practices Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.	ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.	Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and limitations on their use are driven by people's needs,
		The uses of technologies and limitations

Students who demonstrate understanding can: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.*

Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

The performance expectations above were developed using the following elements from the NRC document A Framework for R-12 Science Education.			
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
Constructing Explanations and Designing	ESS3.C: Human Impacts on Earth Systems	Cause and Effect	
Solutions	Human activities have significantly	Relationships can be classified as causal	
 Apply scientific principles to design an 	altered the biosphere, sometimes	or correlational, and correlation does not	
object, tool, process or system.	damaging or destroying natural habitats	necessarily imply causation.	
	and causing the extinction of other		
	species. But changes to Earth's	Connections to Engineering, Technology, and	
	environments can have different impacts	Applications of Science	
	(negative and positive) for different living		
	things.	Influence of Science, Engineering, and	
	 Typically as human populations and per- 	Technology on Society and the Natural	
	capita consumption of natural resources	World	
	increase, so do the negative impacts on	The uses of technologies and limitations	
	Earth unless the activities and	on their use are driven by people's needs,	
	technologies involved are engineered	desires, and values; by the findings of	
	otherwise.	scientific research; and by differences in	
		such factors as climate, natural	
		resources, and economic conditions. Thus	
		technology use varies from region to	
		region and over time.	

Students who demonstrate understanding can: Construct an argument supported by evidence for how increases in human population and percapita consumption of natural resources impact Earth's systems.

Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	ESS3.C: Human Impacts on Earth Systems	Cause and Effect
 Construct an oral and written argument 	 Typically as human populations and per- 	Cause and effect relationships may be
supported by empirical evidence and	capita consumption of natural resources	used to predict phenomena in natural or
scientific reasoning to support or refute	increase, so do the negative impacts on	designed systems.
an explanation or a model for a	Earth unless the activities and	
phenomenon or a solution to a problem.	technologies involved are engineered	Connections to Engineering, Technology, and
	otherwise.	Applications of Science
		Influence of Science, Engineering, and
		Technology on Society and the Natural
		World
		All human activity draws on natural
		resources and has both short and long-
		term consequences, positive as well as
		negative, for the health of people and the
		natural environment. ♥

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
		Connections to Nature of Science
		Science Addresses Questions About the Natural and Material World Science knowledge can describe consequences of actions but does not make the decisions that society takes.

MS. Engineering Design

Students who demonstrate understanding can:

MS-ETS1-1

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4

Develop a model to generate data for repetitive testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking Questions and Defining Problems Define a design problem that can be solved through the development of an object, tool, process, or system and includes multiple criteria and constraints, including scientific knowledge that may	Problems The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of	Influence of Engineering, Technology, and Science on Society and the Natural World All human activity draws on natural resources and has both short- and longterm consequences, positive as well as negative, for the health of people and the
limit possible solutions.	constraints includes consideration of scientific principles and other relevant knowledge likely to limit possible solutions.	 natural environment. The use of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Students who demonstrate understanding can: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions	
Evaluate competing design solutions based on jointly developed and agreed- upon design criteria.	 There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. 	

Students who demonstrate understanding can: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting DataAnalyze and interpret data to determine	 ETS1.B: Developing Possible Solutions There are systematic processes for 	G. Cossession. S. Conscepts
similarities and differences in findings.	 evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. 	
	Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.	

Students who demonstrate understanding can: Develop a model to generate data for repetitive testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ETS1.B: Developing Possible Solutions	
 Develop a model to generate data to test ideas about designed system, including those representing inputs and outputs. 	 A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. Models of all kinds are important for testing solutions. 	
	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.	